- 1. A fair dice is thrown and its score noted.
 - a. If X is the distribution of the scores obtainable, state the distribution of X and any parameters.
 - . Calculate E(X). [2]
 - c. Calculate Var(X). [2]

a,
$$X \sim U(6)$$

b, $E(X) = 6 + 1 = \frac{3}{2}$

c/
$$Var(X) = \frac{1}{12}(6^2 - 1) = \frac{35}{12}$$

- 2. A fair spinner has edges numbered 2, 4, 6 and 8. If Y is the score obtained on any one spin of the spinner:
 - a. Find E(Y) [2]
 - b. Find Var(Y) [3]

$$E(X) = 4 + 1 = 5$$

b
$$Var(X) = \frac{1}{12}(4^2 - 1) = \frac{15}{12} = \frac{5}{12}$$

 $Var(Y) = Var(2X) = 2^2 Var(X) = 4(\frac{5}{14}) = \frac{5}{12}$

3. A fair dice with faces numbered 3, 4, 5, 6, 7 and 8 is thrown. Find the expectation and the variance of the score obtained on throwing the dice. [5]

$$X \sim U(6) = E(X) = 6 + 1 = 7$$
, $Var(X) = 12(6^2 - 12)$

[1]

=>
$$E(X+2)=E(X)+2=11$$

4. A mini-roulette is spun. The possible outcomes are 5, 8, 11, 14 and 17. Find the expectation and variance of the average score obtained over a large number of spins.

$$X \sim U(5) = E(X) = \frac{5+1}{2} = 3$$
, $Vor(X) = \frac{1}{12}(5^2 - 1) = 2$
 $E(3X+2) = 3E(X) + 2 = 11$, $Vor(3X+2) = 3^2 Vor(X) = 18$

5. A variable has a uniform distribution with n possible outcomes. Given that the variance of the distribution is 10, find the value of n and the expectation of the distribution. [4]

$$Var(X) = 10 = 2$$
 $I_{12}(n^2 - 1) = (0) = 2$
 $I_{12}(n^2$